3,904 research outputs found

    On global location-domination in graphs

    Full text link
    A dominating set SS of a graph GG is called locating-dominating, LD-set for short, if every vertex vv not in SS is uniquely determined by the set of neighbors of vv belonging to SS. Locating-dominating sets of minimum cardinality are called LDLD-codes and the cardinality of an LD-code is the location-domination number λ(G)\lambda(G). An LD-set SS of a graph GG is global if it is an LD-set of both GG and its complement G‾\overline{G}. The global location-domination number λg(G)\lambda_g(G) is the minimum cardinality of a global LD-set of GG. In this work, we give some relations between locating-dominating sets and the location-domination number in a graph and its complement.Comment: 15 pages: 2 tables; 8 figures; 20 reference

    Thermodynamics of the Stephani Universes

    Get PDF
    We examine the consistency of the thermodynamics of the most general class of conformally flat solution with an irrotational perfect fluid source (the Stephani Universes). For the case when the isometry group has dimension r≥2r\ge2, the Gibbs-Duhem relation is always integrable, but if r<2r<2 it is only integrable for the particular subclass (containing FRW cosmologies) characterized by r=1r=1 and by admitting a conformal motion parallel to the 4-velocity. We provide explicit forms of the state variables and equations of state linking them. These formal thermodynamic relations are determined up to an arbitrary function of time which reduces to the FRW scale factor in the FRW limit of the solutions. We show that a formal identification of this free parameter with a FRW scale factor determined by FRW dynamics leads to an unphysical temperature evolution law. If this parameter is not identified with a FRW scale factor, it is possible to find examples of solutions and formal equations of state complying with suitable energy conditions and reasonable asymptotic behavior and temperature laws.Comment: 25 pages, Plain.TeX, four figure

    MaxEnt and dynamical information

    Get PDF
    The MaxEnt solutions are shown to display a variety of behaviors (beyond the traditional and customary exponential one) if adequate dynamical information is inserted into the concomitant entropic-variational principle. In particular, we show both theoretically and numerically that power laws and power laws with exponential cut-offs emerge as equilibrium densities in proportional and other dynamics

    Ultrafast spectroscopy of single molecules

    Get PDF
    We present a single-molecule study on femtosecond dynamics in multichromophoric systems, combining fs pump-probe, emission-spectra and fluorescence-lifetime analysis. At the single molecule level a wide range of exciton delocalisation lengths and energy redistribution times is revealed. Next, two color pump-probe experiments are presented as a step to addressing ultrafast energy transfer in individual complexes
    • …
    corecore